These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 3alpha,5alpha-Tetrahydroprogesterone (allopregnanolone) and gamma-aminobutyric acid: autocrine/paracrine interactions in the control of neonatal PSA-NCAM+ progenitor proliferation. Author: Gago N, El-Etr M, Sananès N, Cadepond F, Samuel D, Avellana-Adalid V, Baron-Van Evercooren A, Schumacher M. Journal: J Neurosci Res; 2004 Dec 15; 78(6):770-83. PubMed ID: 15523635. Abstract: The earliest identified neonatal neural progenitors are cells that express the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). One of these progenitors is the early PSA-NCAM+ progenitor (ePSA-NCAM+ progenitor; Gago et al. [2003] Mol Cell Neurosci 22:162-178), which corresponds to a multipotential cell with a default differentiation through glial lineages. The ePSA-NCAM+ progenitor can synthesize the neurosteroid progesterone (PROG) and its reduced metabolite 3alpha,5alpha-tetrahydroprogesterone (3alpha,5alpha-THP, or allopregnanolone; Gago et al. [ 2001] Glia 36:295-308). The latter is a potent positive allosteric modulator of gamma-aminobutyric acid type A (GABAA) receptors. In the present work, we demonstrate that PROG and 3alpha,5alpha-THP both stimulate ePSA-NCAM+ progenitor proliferation. PROG exerted its mitogenic effect indirectly, through its conversion to 3alpha,5alpha-THP, since it could be abolished by an inhibitor of the 5alpha-reductase (L685-273) and mimicked by 3alpha,5alpha-THP. A dose-response curve revealed a bell-shaped effect of 3alpha,5alpha-THP on ePSA-NCAM+ progenitor proliferation, with greatest stimulation at nanomolar concentrations. The mitogenic effect of 3 alpha,5 alpha-THP was mediated by GABAA receptors, insofar as it could be blocked by the selective antagonist bicuculline. ePSA-NCAM+ progenitors indeed expressed mRNAs for GABAA receptor subunits, and GABA enhanced cell proliferation, an effect that was also bicuculline sensitive. Moreover, these cells synthesized GABA, which was involved in a tonic stimulation of their proliferation. These results reveal complex autocrine/paracrine loops in the control of ePSA-NCAM+ progenitor proliferation, involving both neurosteroid and GABA signaling, and suggest a novel key role for 3alpha,5alpha-THP in the development of the nervous system.[Abstract] [Full Text] [Related] [New Search]