These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Disruption of exonic splicing enhancer elements is the principal cause of exon skipping associated with seven nonsense or missense alleles of NF1. Author: Zatkova A, Messiaen L, Vandenbroucke I, Wieser R, Fonatsch C, Krainer AR, Wimmer K. Journal: Hum Mutat; 2004 Dec; 24(6):491-501. PubMed ID: 15523642. Abstract: Nonsense, missense, and even silent mutation-associated exon skipping is recognized in an increasing number of genes as a novel form of splicing mutation. The analysis of individual mutations of this kind can shed light on basic pre-mRNA splicing mechanisms. Using cDNA-based mutation detection analysis, we have identified one missense and six nonsense mutations that lead to different extents of exon-lacking transcripts in neurofibromatosis type 1 (NF1) patients. We confirmed mutation-associated exon skipping in a heterologous hybrid minigene context. There is evidence that the disruption of functional exonic splicing enhancer (ESE) sequences is frequently the mechanism underlying mutation-associated exon skipping. Therefore, we examined the wild-type and mutant NF1 sequences with two available ESE-prediction programs. Either or both programs predicted the disruption of ESE motifs in six out of the seven analyzed mutations. To ascertain the function of the predicted ESEs, we quantitatively measured their ability to rescue splicing of an enhancer-dependent exon, and found that all seven mutant ESEs had reduced splicing enhancement activity compared to the wild-type sequences. Our results suggest that the wild-type sequences function as ESE elements, whose disruption is responsible for the mutation-associated exon skipping observed in the NF1 patients. Further, this study illustrates the utility of ESE-prediction programs for delineating candidate sequences that may serve as ESE elements. However, until more refined prediction algorithms have been developed, experimental data, preferably from patient tissues, remain indispensable to assess the clinical significance, particularly of missense and silent mutations, and to understand the structure-function relationship in the corresponding protein.[Abstract] [Full Text] [Related] [New Search]