These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Porcine beta-lactoglobulin chemical unfolding: identification of a non-native alpha-helical intermediate.
    Author: D'Alfonso L, Collini M, Ragona L, Ugolini R, Baldini G, Molinari H.
    Journal: Proteins; 2005 Jan 01; 58(1):70-9. PubMed ID: 15526300.
    Abstract:
    The chemical unfolding behavior of porcine beta-lactoglobulin (PLG) has been followed at pH 2 and 6 in the presence of guanidinium hydrochloride. The PLG unfolding transition, monitored by tryptophan fluorescence, far and near UV circular dichroism and 1D-NMR, can be described by a three-state transition suggesting the presence of at least one intermediate state that appears to display an excess of non-native alpha-helical structures. The thermodynamic parameters, as determined through a global analysis fitting procedure, give estimates of the free energy differences of the transitions connecting the native, the intermediate and the unfolded state: DeltaG(NI) (0) = 2.8 +/- 0.7 kcal mol(-1) (pH 2) and 4.2 +/- 0.5 kcal mol(-1) (pH 6) and DeltaG(NU) (0) = 7.2 +/- 0.6 kcal mol(-1) (pH 2) and 6.9 +/- 0.6 kcal mol(-1) (pH 6). CD unfolding data of the bovine species (BLG) have been collected here under the same experimental conditions of PLG to allow a careful comparison of the two beta-lactoglobulins. Intermediates with different characteristics have been identified for BLG and PLG, and their nature has been discussed on a structural analysis basis. The thermodynamic data reported here for PLG and BLG and the comparative analysis with data reported for equine beta lactoglobulin, show that homologous beta-barrel proteins, belonging to the same family and displaying high sequence identity (52-64%) populate unfolding intermediates to different extents, even though a common tendency to the formation of non-native alpha-helical intermediates, can be envisaged. The present results provide a prerequisite foundation of knowledge for the design and interpretation of future folding kinetic studies.
    [Abstract] [Full Text] [Related] [New Search]