These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lysophosphatidylcholine decreases locomotor activities and dopamine turnover rate in rats.
    Author: Lee ES, Soliman KF, Charlton CG.
    Journal: Neurotoxicology; 2005 Jan; 26(1):27-38. PubMed ID: 15527871.
    Abstract:
    Lysophosphatidylcholine (lyso-PTC), a secondary product of S-adenosylmethionine (SAM)-dependent phosphatidylethanolamine (PTE) methylation, is a potent cytotoxin and might be involved in the pathogenesis of Parkinson's disease (PD). Our previous studies showed that the injection of SAM into the brain caused PD-like changes in rodents. Moreover, 1-methyl-4-phenylpyridinium (MPP+), a Parkinsonism-inducing agent, increased lyso-PTC formation via the stimulation of PTE methylation pathway. These results indicate a possible role of lyso-PTC in the PD-like changes seen following the injection of SAM or MPP+. In the present study, lyso-PTC was injected into the lateral ventricle of rats and locomotor activities and the biogenic amine levels were measured to evaluate the effects of lyso-PTC on the dopaminergic system. Quinacrine, a phospholipase A2 (PLA2) inhibitor, was employed to determine its protective effect on SAM-induced PD-like changes by the inhibition of lyso-PTC formation. The results showed that 1 h after the injection, 0.4 and 0.8 micromol of lyso-PTC increased striatal dopamine (DA) by 20 and 24%, decreased 3,4-dihydroxyphenylacetic acid (DOPAC) by 37 and 45% and decreased homovanilic acid (HVA) by 24 and 13%, respectively. Consequently, dopamine turnover rate, (DOPAC + HVA)/DA, was significantly reduced by 44 and 48% in the rat striatum. Meanwhile, the administration of 0.4 or 0.8 micromol of lyso-PTC decreased movement time by 52 and 63%, total distance by 44 and 48% and the number of movements by 43 and 64%, respectively. Quinacrine attenuated SAM-induced hypokinesia without affecting SAM metabolism prior to its action on rat brain. The results obtained indicate that the hypokinesia observed following the administration of lyso-PTC might be related to the decline in DA turnover in the striatum in response to lyso-PTC exposure. The present study suggests that inhibitory effects of lyso-PTC on dopaminergic neurotransmission is one of the contributing factors in SAM and MPP+-induced PD-like changes.
    [Abstract] [Full Text] [Related] [New Search]