These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dual effect of angiotensin-converting enzyme inhibition on angiogenesis in type 1 diabetic mice.
    Author: Ebrahimian TG, Tamarat R, Clergue M, Duriez M, Levy BI, Silvestre JS.
    Journal: Arterioscler Thromb Vasc Biol; 2005 Jan; 25(1):65-70. PubMed ID: 15528473.
    Abstract:
    OBJECTIVE: We analyzed the beneficial therapeutic effect of angiotensin converting enzyme inhibitor (ACEI) on both retinal and hind limb neovascularization in diabetic mice. METHODS AND RESULTS: Diabetic mice (streptozotocin, 40 mg/kg) were treated with or without ACEI (Perindopril, 3 mg/kg per day) or AT1 receptor blocker (Candesartan, 20 mg/kg) for 4 months. Hind limb ischemia was then induced by right femoral artery ligature for 1 additional month. In the ischemic leg, angiographic score, capillary density, and foot perfusion were increased by 2.7, 2.0-fold, and 1.6-fold, respectively, in ACEI-treated diabetic mice compared with untreated diabetic animals (P<0.01). ACEI also raised vascular endothelial growth factor (VEGF) protein level by 1.4-fold in ischemic diabetic leg. This ACEI pro-angiogenic effect was totally blunted in diabetic bradykinin B2 receptor-deficient animals, suggesting that it was mediated by the bradykinin pathway. In the diabetic retina, angiotensinogen and ACE mRNA levels were increased by 2.8-fold and 4.1-fold, respectively (P<0.01 versus nondiabetic mice), highlighting a local activation of renin-angiotensin system. Diabetes also raised VEGF protein level by 1.5-fold (P<0.05 versus nondiabetic mice). Treatments with ACEI and AT1 receptor blocker hampered diabetes-induced VEGF upregulation and retinal neovascularization. CONCLUSIONS: ACE inhibition improved neovascularization in the diabetic ischemic leg through activation of bradykinin signaling, whereas it reduced vessel growth in the diabetic retina through inhibition of overacting Ang II pathway.
    [Abstract] [Full Text] [Related] [New Search]