These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of ancestral Mycobacterium tuberculosis by multiple genetic markers and proposal of genotyping strategy.
    Author: Sun YJ, Lee AS, Ng ST, Ravindran S, Kremer K, Bellamy R, Wong SY, van Soolingen D, Supply P, Paton NI.
    Journal: J Clin Microbiol; 2004 Nov; 42(11):5058-64. PubMed ID: 15528696.
    Abstract:
    Sixty-eight ancestral Mycobacterium tuberculosis isolates were previously identified by using the tuberculosis-specific deletion 1 (TbD1) PCR and mycobacterial interspersed-repetitive-unit-variable-number tandem repeat (MIRU-VNTR) typing (Y. J. Sun, R. Bellamy, A. S. G. Lee, S. T. Ng, S. Ravindran, S.-Y. Wong, C. Locht, P. Supply, and N. I. Paton, J. Clin. Microbiol. 42:1986-1993, 2004). These TbD1(+) ancestral isolates were further characterized and typed in this study by IS6110 restriction fragment length polymorphism (RFLP) typing, VNTR typing using exact tandem repeats (VNTR-ETR), and spoligotyping of the direct-repeat region. To our knowledge, this is the first characterization of this genogroup by multiple genetic markers based on a fairly large sample size. In this genogroup, all spoligotypes were characterized by the absence of spacers 29 to 32 and 34. In addition, VNTR-ETR typing could add further resolution to the clustered isolates identified by MIRU-VNTR, and the combination of MIRU-VNTR and VNTR-ETR, called MIRU-ETR, showed the highest discriminatory power for these strains compared to IS6110 RFLP typing and spoligotyping alone. However, MIRU-ETR appeared to still cluster some probably epidemiologically unrelated strains, as judged by IS6110 RFLP divergence. Therefore, a typing strategy based on stepwise combination of MIRU-ETR and IS6110 RFLP is proposed to achieve maximal discrimination for unrelated TbD1(+) strains. This typing strategy may be useful in areas where TbD1(+) ancestral strains are prevalent.
    [Abstract] [Full Text] [Related] [New Search]