These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Order from disorder, corralling cholesterol with chaotic lipids. The role of polyunsaturated lipids in membrane raft formation.
    Author: Wassall SR, Brzustowicz MR, Shaikh SR, Cherezov V, Caffrey M, Stillwell W.
    Journal: Chem Phys Lipids; 2004 Nov; 132(1):79-88. PubMed ID: 15530450.
    Abstract:
    A myriad of health benefits including the prevention of cancer and heart disease accompanies consumption of polyunsaturated fatty acids (PUFA). Of special importance is the omega-3-PUFA docosahexaenoic acid (DHA), with 22 carbons and six double bonds that constitute the most highly unsaturated fatty acid naturally occurring. Our experiments target the membrane as a likely site of action and focus upon the interaction of cholesterol with PUFA-containing phospholipids. They support the idea that steric incompatibility of the rigid steroid moiety for highly disordered PUFA chains promotes lateral segregation of lipids into PUFA-rich/sterol-poor and PUFA-poor/sterol-rich regions. Solid state 2H NMR and X-ray diffraction demonstrate that the solubility of cholesterol is low in polyunsaturated bilayers. In mixed membranes of phosphatidylethanolamine (PE) with the lipid raft-forming molecules sphingomyelin (SM) and cholesterol, diminished affinity of the sterol for 1-[2H31]palmitoyl-2-docosahexaenoylphosphatidylethanolamine ([2H31]16:0-22:6PE) relative to 1-[2H31]palmitoyl-2-oleoylphosphatidylethanolamine ([2H31]16:0-18:1PE) is identified by 2H NMR order parameters. Here, lies the origin of a potential biological advantage of the relatively modest increase in PUFA content of plasma membranes that would be conferred by dietary supplementation. We hypothesize that the enhanced propensity to form SM-/cholesterol-rich rafts as well as PUFA-rich/cholesterol-poor microdomains would modify the function of proteins for which these respective regions provide a platform.
    [Abstract] [Full Text] [Related] [New Search]