These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Adrenomedullin is highly expressed in blood monocytes associated with acute Kawasaki disease: a microarray gene expression study. Author: Nomura I, Abe J, Noma S, Saito H, Gao B, Wheeler G, Leung DY. Journal: Pediatr Res; 2005 Jan; 57(1):49-55. PubMed ID: 15531734. Abstract: Kawasaki disease (KD) is an acute inflammatory disorder of children frequently associated with the development of coronary artery abnormalities. Although a great deal is known about inflammatory and immune responses in acute KD, the mechanisms linking the immune response to vascular changes are not known. To gain further insight into this process, we performed a microarray gene expression analysis on RNA isolated from the peripheral blood mononuclear cells of four patients with KD during both their acute and convalescent phases. Forty-seven genes of 7129 genes examined showed an increased expression in three or all four patients in the acute compared with the convalescent phase of KD. Fourteen of these genes were significantly (p < 0.05) up-regulated, including several inflammatory response genes (e.g. S-100 A9 protein) and also anti-inflammatory genes (e.g. TSG-6). Of greatest interest, the adrenomedullin (ADM) gene, known to be associated with coronary artery vasodilation, was up-regulated in the acute phase of KD (p = 0.024). Up-regulation of ADM in the acute phase of KD was confirmed in peripheral blood mononuclear cells of 11 additional KD patients by reverse transcriptase-PCR (p < 0.01). Isolated blood monocytes but not lymphocytes were demonstrated by real-time PCR to have increased ADM mRNA (p = 0.01). Plasma ADM protein level in 32 additional KD patients was also confirmed to be higher in acute KD compared with convalescent KD (p < 0.032). It is interesting that from microarray results, other molecules known to be associated with coronary dilation, including nitric oxide, prostacyclin, acetylcholine, bradykinin, substance P, and serotonin, were not elevated in acute KD. Our current study suggests that ADM-expressing monocytes that infiltrate the coronary vascular wall may be the cause of coronary dilation in the acute phase of KD.[Abstract] [Full Text] [Related] [New Search]