These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phosphatidylinositol 3-kinase offsets cAMP-mediated positive inotropic effect via inhibiting Ca2+ influx in cardiomyocytes.
    Author: Leblais V, Jo SH, Chakir K, Maltsev V, Zheng M, Crow MT, Wang W, Lakatta EG, Xiao RP.
    Journal: Circ Res; 2004 Dec 10; 95(12):1183-90. PubMed ID: 15539636.
    Abstract:
    Phosphoinositide 3-kinase (PI3K) has been implicated in beta2-adrenergic receptor (beta2-AR)/G(i)-mediated compartmentation of the concurrent G(s)-cAMP signaling, negating beta2-AR-induced phospholamban phosphorylation and the positive inotropic and lusitropic responses in cardiomyocytes. However, it is unclear whether PI3K crosstalks with the beta1-AR signal transduction, and even more generally, with the cAMP/PKA pathway. In this study, we show that selective beta1-AR stimulation markedly increases PI3K activity in adult rat cardiomyocytes. Inhibition of PI3K by LY294002 significantly enhances beta1-AR-induced increases in L-type Ca2+ currents, intracellular Ca2+ transients, and myocyte contractility, without altering the receptor-mediated phosphorylation of phospholamban. The LY294002 potentiating effects are completely prevented by betaARK-ct, a peptide inhibitor of beta-adrenergic receptor kinase-1 (betaARK1) as well as G(betagamma) signaling, but not by disrupting G(i) function with pertussis toxin. Moreover, forskolin, an adenylyl cyclase activator, also elevates PI3K activity and inhibition of PI3K enhances forskolin-induced contractile response in a betaARK-ct sensitive manner. In contrast, PI3K inhibition affects neither the basal contractility nor high extracellular Ca2+-induced increase in myocyte contraction. These results suggest that beta1-AR stimulation activates PI3K via a PKA-dependent mechanism, and that G(betagamma) and the subsequent activation of betaARK1 are critically involved in the PKA-induced PI3K signaling which, in turn, negates cAMP-induced positive inotropic effect via inhibiting sarcolemmal Ca2+ influx and the subsequent increase in intracellular Ca2+ transients, without altering the receptor-mediated phospholamban phosphorylation, in intact cardiomyocytes.
    [Abstract] [Full Text] [Related] [New Search]