These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electrophysiological and neurochemical characterization of neurons of the medial preoptic area in Japanese quail (Coturnix japonica). Author: Cornil CA, Seutin V, Motte P, Balthazart J. Journal: Brain Res; 2004 Dec 17; 1029(2):224-40. PubMed ID: 15542078. Abstract: Intracellular recordings of medial preoptic neurons demonstrated that most neurons show a spontaneous firing, a linear I-V relationship and low-threshold-like events suppressed by the application of Ni2+. Some neurons had a depolarizing sag of the membrane potential in response to hyperpolarizing current pulses. The majority of the cells exhibited a robust spontaneous synaptic activity suppressed by SR95531 (100 microM), a GABAA receptor antagonist, and/or by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 microM), an (RS)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate (KA) glutamate receptor antagonist. Most neurons were affected by the application of AMPA (10 microM), kainate (30 microM), N-methyl-D-aspartic acid (NMDA, 10 microM), isoguvacine (a GABAA receptor agonist, 100 microM), dopamine (100 microM), and norepinephrine (100 microM). Biocytin injections coupled to aromatase immunocytochemistry identified 19 recorded neurons including 3 displaying a dense aromatase immunoreactivity. All of them responded to kainate, dopamine, and norepinephrine, while only one responded to isoguvacine and NMDA. Taken together, these results demonstrate a relative electrical and neurochemical homogeneity of the medial preoptic neurons, including a few aromatase-immunoreactive neurons that could be identified by immunocytochemistry after biocytin labeling of the recorded neurons.[Abstract] [Full Text] [Related] [New Search]