These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential rescue of poliovirus RNA replication functions by genetically modified RNA polymerase precursors. Author: Cornell CT, Brunner JE, Semler BL. Journal: J Virol; 2004 Dec; 78(23):13007-18. PubMed ID: 15542652. Abstract: We have previously described the RNA replication properties of poliovirus transcripts harboring chimeric RNA polymerase sequences representing suballelic exchanges between poliovirus type 1 (PV1) and coxsackievirus B3 (CVB3) utilizing an in vitro translation and RNA replication assay (C. Cornell, R. Perera, J. E. Brunner, and B. L. Semler, J. Virol. 78:4397-4407, 2004). We showed that three of the seven chimeras were capable of RNA replication in vitro, although replication levels were greatly reduced compared to that of wild-type transcripts. Interestingly, one of the replication-competent transcripts displayed a strand-specific RNA synthesis defect suggesting (i) a differential replication complex assembly mechanism involving 3D and/or precursor molecules (i.e., 3CD) required for negative- versus positive-strand RNA synthesis or (ii) effect(s) on the ability of the 3D polymerase to form higher-ordered structures required for positive-strand RNA synthesis. In this study, we have attempted to rescue defective RNA replication in vitro by cotranslating nonstructural proteins from a transcript encoding a large precursor polyprotein (P3) to complement 3D polymerase and/or precursor polypeptide functions altered in each of the chimeric constructs. Utilization of a wild-type P3 construct revealed that all transcripts containing chimeric PV1/CVB3 polymerase sequences can be complemented in trans for both negative- and positive-strand RNA synthesis. Furthermore, data from experiments utilizing genetically modified forms of the P3 polyprotein, containing mutations within 3C or 3D sequences, strongly suggest the existence of different protein-protein and protein-RNA interactions required for positive- versus negative-strand RNA synthesis. These results, combined with data from in vitro RNA elongation assays, indicate that the delivery of active 3D RNA polymerase to replication complexes requires a series of macromolecular interactions that rely on the presence of specific 3D amino acid sequences.[Abstract] [Full Text] [Related] [New Search]