These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nitric oxide: a signaling molecule against mitochondrial permeability transition- and pH-dependent cell death after reperfusion.
    Author: Kim JS, Ohshima S, Pediaditakis P, Lemasters JJ.
    Journal: Free Radic Biol Med; 2004 Dec 15; 37(12):1943-50. PubMed ID: 15544914.
    Abstract:
    Reperfusion of ischemic tissue can precipitate cell death. Much of this cell killing is related to the return of physiological pH after the tissue acidosis of ischemia. The mitochondrial permeability transition (MPT) is a key mechanism contributing to this pH-dependent reperfusion injury in hepatocytes, myocytes, and other cell types. When ATP depletion occurs after the MPT, necrotic cell death ensues. If ATP levels are maintained, at least in part, the MPT initiates apoptosis caused by mitochondrial swelling and release of cytochrome c and other proapoptotic factors. Cyclosporin A and acidotic pH inhibit opening of permeability transition pores and protect cells against oxidative stress and ischemia/reperfusion injury, whereas Ca(2+), mitochondrial reactive oxygen species, and pH above 7 promote mitochondrial inner membrane permeabilization. Reperfusion with nitric oxide (NO) donors also blocks the MPT via a guanylyl cyclase and protein kinase G-dependent signaling pathway, which in turn prevents reperfusion-induced cell killing. In isolated mitochondria, a combination of cGMP, cytosolic extract, and ATP blocks the Ca(2+)-induced MPT, an effect that is reversed by protein kinase G inhibition. Thus, NO prevents pH-dependent cell killing after ischemia/reperfusion by a guanylyl cyclase/cGMP/protein kinase G signaling cascade that blocks the MPT.
    [Abstract] [Full Text] [Related] [New Search]