These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The antioxidant defense protein heme oxygenase 1 is a novel target for statins in endothelial cells.
    Author: Grosser N, Hemmerle A, Berndt G, Erdmann K, Hinkelmann U, Schürger S, Wijayanti N, Immenschuh S, Schröder H.
    Journal: Free Radic Biol Med; 2004 Dec 15; 37(12):2064-71. PubMed ID: 15544924.
    Abstract:
    Cholesterol-independent, pleiotropic actions of hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) exert anti-inflammatory and antioxidant action by as yet unidentified mechanisms. This study explores the role of heme oxygenase 1 (HO-1) as a target and mediator of statins. In cultured endothelial cells derived from human umbilical vein, simvastatin and lovastatin increased HO-1 mRNA levels in a concentration- and time-dependent fashion. HO-1 induction by statins remained unaffected by mevalonate and N-nitro-l-arginine methyl ester, precluding the involvement of isoprenoid- and NO-dependent pathways. HO-1 mRNA induction was abrogated in the presence of actinomycin D and cycloheximide. In cells transfected with a reporter gene construct containing the proximal 4 kB of the HO-1 gene promoter 5'-flanking region, significant upregulation of promoter activity was detected, indicating that regulatory elements binding to this region were involved in transcriptional HO-1 induction by statins. Increased transcriptional expression of HO-1 was associated with elevated HO-1 protein levels and reduction of free radical formation. Our results show that the antioxidant defense protein HO-1 is a target site of statins in endothelial cells. Statins lead to HO-1 promoter activation, transcript and protein accumulation. This novel pathway may contribute to and explain the pleiotropic antioxidant, anti-inflammatory, and antiatherogenic actions of statins.
    [Abstract] [Full Text] [Related] [New Search]