These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Investigation of marmoset hybrids (Cebuella pygmaea x Callithrix jacchus) and related Callitrichinae (Platyrrhini) by cross-species chromosome painting and comparative genomic hybridization.
    Author: Neusser M, Münch M, Anzenberger G, Müller S.
    Journal: Cytogenet Genome Res; 2005; 108(1-3):191-6. PubMed ID: 15545729.
    Abstract:
    We report on the cytogenetics of twin offspring from an interspecies cross in marmosets (Callitrichinae, Platyrrhini), resulting from a pairing between a female Common marmoset (Callithrix jacchus, 2n = 46) and a male Pygmy marmoset (Cebuella pygmaea, 2n = 44). We analyzed their karyotypes by multi-directional chromosome painting employing human, Saguinus oedipus and Lagothrix lagothricha chromosome-specific probes. Both hybrid individuals had a karyotype with a diploid chromosome number of 2n = 45. As a complementary tool, interspecies comparative genomic hybridization (iCGH) was performed in order to screen for genomic imbalances between the hybrids and their parental species, and between Callithrix argentata and S. oedipus, respectively. These genomic imbalances were confined to centromeric and telomeric heterochromatin, while euchromatic chromosome regions appeared balanced in all species investigated. When comparing marmosets and tamarins, sequence divergence of centromeric heterochromatin was already clearly noticeable. In the C. argentata and C. pygmaea genomes numerous subtelomeric regions were affected by amplification of different repetitive sequences. Cross-species FISH with a microdissection-derived C. pygmaea repetitive probe revealed species specificity of this repetitive sequence at the molecular cytogenetic level of resolution.
    [Abstract] [Full Text] [Related] [New Search]