These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: CXCR3 and CCR5 positive T-cell recruitment in acute human renal allograft rejection.
    Author: Panzer U, Reinking RR, Steinmetz OM, Zahner G, Sudbeck U, Fehr S, Pfalzer B, Schneider A, Thaiss F, Mack M, Conrad S, Huland H, Helmchen U, Stahl RA.
    Journal: Transplantation; 2004 Nov 15; 78(9):1341-50. PubMed ID: 15548973.
    Abstract:
    BACKGROUND: Experimental studies suggest that the infiltration of activated T cells into the allograft, the key event in the development of acute renal allograft rejection, depends on the expression of chemokines and their interaction with chemokine receptors expressed on T cells. METHODS: For a more detailed comprehension of the pathogenesis of T-cell recruitment in human acute rejection, the in situ expression of chemokines and chemokine receptors in allografts of 26 patients between day 3 and 9 after renal transplantation was examined in the present prospective study. RESULTS: Immunohistochemical staining showed a significantly increased number of CXCR3 (P<0.01) and CCR5 positive T cells (P<0.01) in the tubulointerstitium of patients with acute allograft rejection according to Banff grade Ia-IIb. Likewise the intrarenal RNA expression of the CXCR3 ligands IP-10 (5.2-fold) and I-TAC (7.2-fold) and the CCR5 ligand RANTES (5.7-fold), was significantly up-regulated in rejecting organs. In situ hybridization revealed that IP-10 but not I-TAC was predominantly expressed by infiltrating leukocytes in the tubulointerstitial area, co-localizing with CXCR3 positive T cells. To a lesser degree expression by tubular cells could be detected, providing a possible explanation for the increased urinary IP-10 excretion we found in patients with rejecting organs. CONCLUSIONS: These data from a prospective, biopsy-controlled study indicate that the local expression of IP-10 and RANTES leads to the directional movement of activated CXCR3 and CCR5 bearing T cells into the renal allograft and mediates acute rejection. Our data provide a rationale that blocking CXCR3 and CCR5 may offer a unique therapeutic approach to prevent episodes of acute rejection in the early phase after renal transplantation.
    [Abstract] [Full Text] [Related] [New Search]