These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: C-peptide stimulates Na+, K+-ATPase via activation of ERK1/2 MAP kinases in human renal tubular cells.
    Author: Zhong Z, Kotova O, Davidescu A, Ehrén I, Ekberg K, Jörnvall H, Wahren J, Chibalin AV.
    Journal: Cell Mol Life Sci; 2004 Nov; 61(21):2782-90. PubMed ID: 15549182.
    Abstract:
    Proinsulin-connecting peptide (C-peptide) exerts physiological effects partially via stimulation of Na(+), K(+)-ATPase. We determined the molecular mechanism by which C-peptide stimulates Na(+), K(+)-ATPase in primary human renal tubular cells (HRTCs). Incubation of the cells with 5 nM human C-peptide at 37 degrees C for 10 min stimulated (86)Rb(+) uptake by 40% (p<0.01). The carboxy-terminal pentapeptide was found to elicit 57% of the activity of the intact molecule. In parallel with ouabain-sensitive (86)Rb(+) uptake, C-peptide increased alpha subunit phosphorylation and basolateral membrane (BLM) abundance of the Na(+), K(+)-ATPase alpha(1) and beta(1) subunits. The increase in BLM abundance of the Na(+), K(+)-ATPase alpha(1) and beta(1) subunits was accompanied by depletion of alpha(1) and beta(1) subunits from the endosomal compartments. C-peptide action on Na(+), K(+)-ATPase was ERK1/2-dependent in HRTCs. C-peptide-stimulated Na(+), K(+)-ATPase activation, phosphorylation of alpha(1)-subunit and translocation of alpha(1) and beta(1) subunits to the BLM were abolished by a MEK1/2 inhibitor (20 muM PD98059). C-peptide stimulation of (86)Rb(+) uptake was also abolished by preincubation of HRTCs with an inhibitor of PKC (1 muM GF109203X). C-peptide stimulated phosphorylation of human Na(+), K(+)-ATPase alpha subunit on Thr-Pro amino acid motifs, which form specific ERK substrates. In conclusion, C-peptide stimulates sodium pump activity via ERK1/2-induced phosphorylation of Thr residues on the alpha subunit of Na(+), K(+)-ATPase.
    [Abstract] [Full Text] [Related] [New Search]