These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bioluminescent imaging of a marking transgene and correction of Fabry mice by neonatal injection of recombinant lentiviral vectors.
    Author: Yoshimitsu M, Sato T, Tao K, Walia JS, Rasaiah VI, Sleep GT, Murray GJ, Poeppl AG, Underwood J, West L, Brady RO, Medin JA.
    Journal: Proc Natl Acad Sci U S A; 2004 Nov 30; 101(48):16909-14. PubMed ID: 15550536.
    Abstract:
    Successful therapy for many inherited disorders could be improved if the intervention were initiated early. This is especially true for lysosomal storage disorders. Earlier intervention may allow metabolic correction to occur before lipid buildup has irreversible consequences and/or before the immune system mounts limiting responses. We have been developing gene therapy to treat lysosomal storage disorders, especially Fabry disease. We describe studies directed toward metabolic correction in neonatal animals mediated by recombinant lentiviral vectors. To develop this method, we first injected a marking lentiviral vector that engineers expression of luciferase into the temporal vein of recipient neonatal animals. The use of a cooled charged-coupled device camera allowed us to track transgene expression over time in live animals. We observed intense luciferase expression in many tissues, including the brain, that did not diminish over 24 weeks. Next, we injected neonatal Fabry mice a single time with a therapeutic lentiviral vector engineered to express human alpha-galactosidase A. The injection procedure was well tolerated. We observed increased plasma levels of alpha-galactosidase A activity starting at our first plasma collection point (4 weeks). Levels of alpha-galactosidase A activity were found to be significantly elevated in many tissues even after 28 weeks. No immune response was observed against the corrective transgene product. Increased levels of enzyme activity also led to significant reduction of globotriaosylceramide in the liver, spleen, and heart. This approach provides a method to treat lysosomal storage disorders and other disorders before destructive manifestations occur.
    [Abstract] [Full Text] [Related] [New Search]