These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [The role of weak specific and nonspecific interactions in recognition and conversation by enzymes of long DNA]. Author: Nevinskiĭ GA. Journal: Mol Biol (Mosk); 2004; 38(5):756-85. PubMed ID: 15554181. Abstract: According to a currently accepted model, enzymes engage in high-rate sliding along DNA when searching for specific recognition sequences or structural elements (modified nucleotides, breaks, single-stranded DNA fragments, etc.). Such sliding requires these enzymes to possess sufficiently high affinity for DNA of any sequence. Thus, significant differences in the enzymes' affinity for specific and nonspecific DNA sequences cannot be expected, and formation of a complex between an enzyme and its target DNA unlikely contributes significantly in the enzyme specificity. To elucidate the factors providing the specificity we have analyzed many DNA replication, DNA repair, topoisomerization, integration, and recombination enzymes using a number of physicochemical methods, including a method of stepwise increase in ligand complexity developed in our laboratory. It was shown that high affinity of all studied enzymes for long DNA is provided by formation of many weak contacts of the enzymes with all nucleotide units covered by protein globules. Contacts of positively charged amino acid residues with internucleotide phosphate groups contribute most to such interactions; the contribution of each contact is very small and the full contact interface usually resembles interactions between oppositely charged biopolymer surfaces. In some cases significant contribution to the affinity is made through hydrophobic and/or van der Waals interactions of the enzymes with nucleobases. Overall, depending on the enzyme, such nonspecific interactions provide 5-8 orders of the enzyme affinity for DNA. Specific interactions of enzymes with long DNA, in contrast to contacts of enzymes with small ligands, are usually weak and comparable in efficiency with weak nonspecific contacts. The sum of specific interactions most often provides approximately one and rarely two orders of the affinity. According to structural data, DNA binding to any of the investigated enzymes is followed by a stage of DNA conformation adjustment including partial or complete DNA melting, deformation of its backbone, stretching, compression, bending or kinking, eversion of nucleotides from the DNA helix, etc. The full set of such changes is characteristic for each individual enzyme. The fact that all enzyme-dependent changes in DNA are effected through weak specific rather than strong interactions is very important. Enzyme-specific changes in DNA conformation are required for effective adjustment of reacting orbitals with accuracy about 10-15 degrees, which is possible only for specific DNA. A transition from nonspecific to specific DNA leads to an increase in the reaction rate (kcat) by 4-8 orders of magnitude. Thus, the stages of DNA conformation adjustment and catalysis proper provide the high specificity of enzyme action.[Abstract] [Full Text] [Related] [New Search]