These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Constructing optimum blood brain barrier QSAR models using a combination of 4D-molecular similarity measures and cluster analysis.
    Author: Pan D, Iyer M, Liu J, Li Y, Hopfinger AJ.
    Journal: J Chem Inf Comput Sci; 2004; 44(6):2083-98. PubMed ID: 15554679.
    Abstract:
    A new method, using a combination of 4D-molecular similarity measures and cluster analysis to construct optimum QSAR models, is applied to a data set of 150 chemically diverse compounds to build optimum blood-brain barrier (BBB) penetration models. The complete data set is divided into subsets based on 4D-molecular similarity measures using cluster analysis. The compounds in each cluster subset are further divided into a training set and a test set. Predictive QASAR models are constructed for each cluster subset using the corresponding training sets. These QSAR models best predict test set compounds which are assigned to the same cluster subset, based on the 4D-molecular similarity measures, from which the models are derived. The results suggest that the specific properties governing blood-brain barrier permeability may vary across chemically diverse compounds. Partitioning compounds into chemically similar classes is essential to constructing predictive blood-brain barrier penetration models embedding the corresponding key physiochemical properties of a given chemical class.
    [Abstract] [Full Text] [Related] [New Search]