These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Specific interactions of tryptophan with phosphatidylcholine and digalactosyldiacylglycerol in pure and mixed bilayers in the dry and hydrated state.
    Author: Popova AV, Hincha DK.
    Journal: Chem Phys Lipids; 2004 Dec; 132(2):171-84. PubMed ID: 15555603.
    Abstract:
    Amphiphilic solutes play an important role in the desiccation tolerance of plant cells, because they can reversibly partition into cellular membranes during dehydration. Their effects on membrane stability depend on their chemical structure, but also on the lipid composition of the host membrane. We have shown recently that tryptophan destabilizes liposomes during freezing. The degree of destabilization depends on the presence of glycolipids in the membranes, but not on the phase preference (bilayer or non-bilayer) of the lipids in mixtures with the bilayer lipid phosphatidylcholine. Here, we have investigated the influence of tryptophan on the phase behavior and intermolecular interactions in dry and hydrated bilayers made from the phospholipid egg phosphatidylcholine and the plant chloroplast glycolipid digalactosyldiacylglycerol, or from a mixture (1:1) of these lipids, using Fourier-transform infrared spectroscopy. To distinguish effects of the hydrophobic ring structure of tryptophan from those of the amino acid moiety, we also performed experiments with the hydrophilic amino acid glycine. Our data show that there are specific interactions between tryptophan and either phospholipid or glycolipid in the dry state, as well as H-bonding interactions between the lipids and both solutes. In the rehydrated state, the H-bonding interactions between amino acids and lipids are mostly replaced by interactions between water and lipids, while the hydrophobic interactions between lipids and tryptophan mostly persist.
    [Abstract] [Full Text] [Related] [New Search]