These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pharmacological characterization of rebamipide: its cholecystokinin CCK1 receptor binding profile and effects on Ca2+ mobilization and amylase release in rat pancreatic acinar cells. Author: Moon SJ, An JM, Kim J, Lee SI, Ahn W, Kim KH, Seo JT. Journal: Eur J Pharmacol; 2004 Nov 28; 505(1-3):61-6. PubMed ID: 15556137. Abstract: We previously reported that rebamipide (2-(4-chlorobenzoylamino)-3-[2(1H)-quinolinon-4-yl]-propionic acid) generated oscillations of intracellular Ca2+ concentration ([Ca2+]i) probably through the activation of cholecystokinin type 1 (CCK1) receptors in rat pancreatic acinar cells. Therefore, in the present study, we aimed to establish the pharmacological characteristics of rebamipide in rat pancreatic acinar cells. CCK-8S and rebamipide inhibited [125I]BH-CCK-8S binding to rat pancreatic acinar cell membranes with IC50 values of 3.13 nM and 37.7 microM, respectively. CCK-8S usually evoked [Ca2+]i oscillations at concentrations lower than 50 pM, and it induced biphasic [Ca2+]i increases at higher concentrations. In contrast to CCK-8S, rebamipide only induced [Ca2+]i oscillations at all the concentrations we used in this study. In addition, rebamipide was shown to inhibit high concentrations of CCK-8S-induced biphasic increases in [Ca2+]i, suggesting that rebamipide might be a partial agonist at cholecystokinin CCK1 receptors. Although rebamipide induced [Ca2+]i oscillations by activating the cholecystokinin CCK1 receptors, rebamipide did not cause amylase release and only inhibited CCK-stimulated amylase release reversibly and dose-dependently. However, rebamipide did not inhibit carbachol-, vasoactive intestinal polypeptide (VIP)-, and forskolin-induced amylase releases. These data indicate that rebamipide functions as a partial agonist for Ca2+ -mobilizing action, and it is also an antagonist for the amylase-releasing action of CCK.[Abstract] [Full Text] [Related] [New Search]