These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structural composition and differential anticoagulant activities of dermatan sulfates from the skin of four species of rays, Dasyatis americana, Dasyatis gutatta, Aetobatus narinari and Potamotrygon motoro.
    Author: Dellias JM, Onofre GR, Werneck CC, Landeira-Fernandez AM, Melo FR, Farias WR, Silva LC.
    Journal: Biochimie; 2004; 86(9-10):677-83. PubMed ID: 15556278.
    Abstract:
    We compared the disaccharide composition of dermatan sulfate (DS) purified from the ventral skin of three species of rays from the Brazilian seacoast, Dasyatis americana, Dasyatis gutatta, Aetobatus narinari and of Potamotrygon motoro, a fresh water species that habits the Amazon River. DS obtained from the four species were composed of non-sulfated, mono-sulfated disaccharides bearing esterified sulfate groups at positions C-4 or C-6 of N-acetyl galactosamine (GalNAc), and disulfated disaccharides bearing esterified sulfate groups at positions C-2 of the uronic acid and at position C-4 or C-6 of GalNAc. However, DS from the skin of P. motoro presented a very low content of the disulfated disaccharides. The anticoagulant actions of ray skin DS, measured by both APTT clotting and HCII-mediated inhibition of thrombin assays, were compared to that of mammalian DS. DS from D. americana had both high APTT and HCII activities, whereas DS from D. gutatta showed activity profiles similar to those of mammalian DS. In contrast, DS from both A. narinari and P. motoro had no measurable activity in the APTT assay. Thus, the anticoagulant activity of ray skin DS is not merely a consequence of their charge density. We speculate that the differences among the anticoagulant activities of these three DS may be related to both different composition and arrangements of the disulfated disaccharide units within their polysaccharide chains.
    [Abstract] [Full Text] [Related] [New Search]