These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Design of an amperometric biosensor using polypyrrole-microgel composites containing glucose oxidase.
    Author: Rubio Retama J, López Cabarcos E, Mecerreyes D, López-Ruiz B.
    Journal: Biosens Bioelectron; 2004 Dec 15; 20(6):1111-7. PubMed ID: 15556356.
    Abstract:
    A new material consisting of a water-dispersed complex of polypyrrole-polystyrensulfonate (PPy) embedded in polyacrylamide (PA) has been prepared and tested as enzyme immobilizing system for its use in amperometric biosensors. Glucose oxidase (GOx) and the water-dispersed polypyrrole complex were entrapped within polyacrylamide microgels by polymerization of acrylamide in the dispersed phase of concentrated emulsions containing GOx and PPy. Polymerization of the dispersed phase provides microparticles whose size lies between 3.5 and 7 microm. The aim of incorporating polypyrrole into the polyacrylamide microparticles was to facilitate the direct transfer of the electrons released in the enzymatic reaction from the catalytic site to the platinum electrode surface. The conductivity of the microparticles was measured by a four-point probe method and confirmed by the successful anaerobic detection of glucose by the biosensor. Thus, the polyacrylamide-polypyrrole (PAPPy) microparticles combine the conductivity of polypyrrole and the pore size control of polyacrylamide. The effects of the polyacrylamide-polypyrrole ratio and cross-linking on the biosensor response have been investigated, as well as the influence of analytical parameters such as pH and enzymatic loading. The PAPPy biosensor is free of interferences arising from ascorbic and uric acids, which allows its use for quantitative analysis in human blood serum.
    [Abstract] [Full Text] [Related] [New Search]