These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 3D-QSAR CoMFA, CoMSIA studies on substituted ureas as Raf-1 kinase inhibitors and its confirmation with structure-based studies. Author: Thaimattam R, Daga P, Rajjak SA, Banerjee R, Iqbal J. Journal: Bioorg Med Chem; 2004 Dec 15; 12(24):6415-25. PubMed ID: 15556759. Abstract: Three-dimensional quantitative structure activity relationship (3D-QSAR) analyses were carried out on 91 substituted ureas in order to understand their Raf-1 kinase inhibitory activities. The studies include Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA). Models with good predictive abilities were generated with the cross validated r2 (r2cv) values for CoMFA and CoMSIA being 0.53 and 0.44, respectively. The conventional r2 values are 0.93 and 0.87 for CoMFA and CoMSIA, respectively. In addition, a homology model of Raf-1 was also constructed using the crystal structure of the kinase domain of B-Raf isoform with one of the most active Raf-1 inhibitors (48) inside the active site. The ATP binding pocket of Raf-1 is virtually similar to that of B-Raf. Selected ligands were docked in the active site of Raf-1. Molecule 48 adopts an orientation similar to that inside the B-Raf active site. The 4-pyridyl group bearing amide substituent is located in the adenosine binding pocket, and anchored to the protein through a pair of hydrogen bonds with Cys424 involving ring N-atom and amide NH group. The results of best 3D-QSAR model were compared with structure-based studies using the Raf-1 homology model. The results of 3D-QSAR and docking studies validate each other and provided insight into the structural requirements for activity of this class of molecules as Raf-1 inhibitors. Based on these results, novel molecules with improved activity can be designed.[Abstract] [Full Text] [Related] [New Search]