These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glucose stimulates the expression and activities of nitric oxide synthases in incubated rat islets: an effect counteracted by GLP-1 through the cyclic AMP/PKA pathway. Author: Jimenez-Feltstrom J, Lundquist I, Salehi A. Journal: Cell Tissue Res; 2005 Feb; 319(2):221-30. PubMed ID: 15558323. Abstract: We have examined the expression and activity of inducible nitric oxide synthase (iNOS) and the activity of neuronal constitutive NOS (ncNOS) in isolated rat pancreatic islets, stimulated by a "hyperglycaemic" concentration of glucose, and whether the NOS activities could be modulated by activation of the cyclic AMP/protein kinase A (cyclic AMP/PKA) system in relation to the insulin secretory process. Here, we show that glucose stimulation (20 mmol/l) induces iNOS and increases ncNOS activity. No iNOS is detectable at basal glucose levels (3.3 mmol/l). The addition of glucagon-like-peptide 1 (GLP-1) or dibutyryl-cAMP to islets incubated with 20 mmol/l glucose results in a marked suppression of iNOS expression and activity, a reduction in ncNOS activity and increased insulin release. The GLP-1-induced suppression of glucose-stimulated iNOS activity and expression and its stimulation of insulin release is, at least in part, PKA dependent, since the PKA inhibitor H-89 reverses the effects of GLP-1. These observations have been confirmed by confocal microscopy showing the glucose-stimulated expression of iNOS, its suppression by GLP-1 and its reversion by H-89 in beta-cells. We have also found that the NO scavenger cPTIO and the NOS inhibitor L-NAME potentiate the insulin response to glucose, again suggesting that NO is a negative modulator of glucose-stimulated insulin release. We conclude that the induction of iNOS and the increase in ncNOS activity caused by glucose in rat islets is suppressed by the cyclic AMP/PKA system. The inhibition of iNOS expression by the GLP-1/cyclic AMP/PKA pathway might possibly be of therapeutic potential in NO-mediated beta-cell dysfunction and destruction.[Abstract] [Full Text] [Related] [New Search]