These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Extent of protein-protein interactions and quasi-equivalence in viral capsids. Author: Shepherd CM, Reddy VS. Journal: Proteins; 2005 Feb 01; 58(2):472-7. PubMed ID: 15558545. Abstract: Viral capsids are composed of multiple copies of one or a few gene products that self-assemble on their own or in the presence of the viral genome and/or auxiliary proteins into closed shells (capsids). We have analyzed 75 high-resolution virus capsid structures by calculating the average fraction of the solvent-accessible surface area of the coat protein subunits buried in the viral capsids. This fraction ranges from 0 to 1 and represents a normalized protein-protein interaction (PPI) index and is a measure of the extent of protein-protein interactions. The PPI indices were used to compare the extent of association of subunits among different capsids. We further examined the variation of the PPI indices as a function of the molecular weight of the coat protein subunit and the capsid diameter. Our results suggest that the PPI indices in T=1 and pseudo-T=3 capsids vary linearly with the molecular weight of the subunit and capsid size. This is in contrast to quasi-equivalent capsids with T>or=3, where the extent of protein-protein interactions is relatively independent of the subunit and capsid sizes. The striking outcome of this analysis is the distinctive clustering of the "T=2" capsids, which are distinguished by higher subunit molecular weights and a much lower degree of protein-protein interactions. Furthermore, the calculated residual (R(sym)) of the fraction buried surface areas of the structurally unique subunits in capsids with T>1 was used to calculate the quasi-equivalence of different subunit environments.[Abstract] [Full Text] [Related] [New Search]