These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Applying mode-of-action and pharmacokinetic considerations in contemporary cancer risk assessments: an example with trichloroethylene. Author: Clewell HJ, Andersen ME. Journal: Crit Rev Toxicol; 2004; 34(5):385-445. PubMed ID: 15560567. Abstract: The guidelines for carcinogen risk assessment recently proposed by the U.S. Environmental Protection Agency (U.S. EPA) provide an increased opportunity for the consideration of pharmacokinetic and mechanistic data in the risk assessment process. However, the greater flexibility of the new guidelines can also make their actual implementation for a particular chemical highly problematic. To illuminate the process of performing a cancer risk assessment under the new guidelines, the rationale for a state-of-the-science risk assessment for trichloroethylene (TCE) is presented. For TCE, there is evidence of increased cell proliferation due to receptor interaction or cytotoxicity in every instance in which tumors are observed, and most tumors represent an increase in the incidence of a commonly observed, species-specific lesion. A physiologically based pharmacokinetic (PBPK) model was applied to estimate target tissue doses for the three principal animal tumors associated with TCE exposure: liver, lung, and kidney. The lowest points of departure (lower bound estimates of the exposure associated with 10% tumor incidence) for lifetime human exposure to TCE were obtained for mouse liver tumors, assuming a mode of action primarily involving the mitogenicity of the metabolite trichloroacetic acid (TCA). The associated linear unit risk estimates for mouse liver tumors are 1.5 x 10(-6) for lifetime exposure to 1 microg TCE per cubic meter in air and 0.4 x 10(-6) for lifetime exposure to 1 microg TCE per liter in drinking water. However, these risk estimates ignore the evidence that the human is likely to be much less responsive than the mouse to the carcinogenic effects of TCA in the liver and that the carcinogenic effects of TCE are unlikely to occur at low environmental exposures. Based on consideration of the most plausible carcinogenic modes of action of TCE, a margin-of-exposure (MOE) approach would appear to be more appropriate. Applying an MOE of 1000, environmental exposures below 66 microg TCE per cubic meter in air and 265 microg TCE per liter in drinking water are considered unlikely to present a carcinogenic hazard to human health.[Abstract] [Full Text] [Related] [New Search]