These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Impaired interleukin-8- and GROalpha-induced phosphorylation of extracellular signal-regulated kinase result in decreased migration of neutrophils from patients with myelodysplasia. Author: Fuhler GM, Knol GJ, Drayer AL, Vellenga E. Journal: J Leukoc Biol; 2005 Feb; 77(2):257-66. PubMed ID: 15561756. Abstract: Patients with myelodysplasia suffer from recurrent bacterial infections as a result of differentiation defects of the myeloid lineage and a disturbed functioning of neutrophilic granulocytes. Important physiological activators of neutrophils are the cytokines interleukin-8/CXC chemokine ligand 8 (IL-8/CXCL8), which activates CXC chemokine receptor 1 and 2 (CXCR1 and CXCR2), and growth-related oncogene (GROalpha)/CXCL1, which stimulates only CXCR2. In this study, we show that migration toward IL-8/GROalpha gradients is decreased in myelodysplastic syndrome (MDS) neutrophils compared with healthy donors. We investigated the signal transduction pathways involved in IL-8/GROalpha-induced migration and showed that specific inhibitors for extracellular signal-regulated kinase (ERK)1/2 and phosphatidylinositol-3 kinase (PI-3K) abrogated neutrophil migration toward IL-8/GROalpha. In accordance with these results, we subsequently showed that IL-8/GROalpha-stimulated activation of ERK1/2 was substantially diminished in MDS neutrophils. Activation of the PI-3K downstream target protein kinase B/Akt was disturbed in MDS neutrophils when cells were activated with IL-8 but normal upon GROalpha stimulation. IL-8 stimulation resulted in higher migratory behavior and ERK1/2 activation than GROalpha stimulation, suggesting a greater importance of CXCR1. We then investigated IL-8-induced activation of the small GTPase Rac implicated in ERK1/2-dependent migration and found that it was less efficient in neutrophils from MDS patients compared with healthy donors. In contrast, IL-8 triggered a normal activation of the GTPases Ras and Ral, indicating that the observed defects were not a result of a general disturbance in CXCR1/2 signaling. In conclusion, our results demonstrate a disturbed CXCR1- and CXCR2-induced neutrophil chemotaxis in MDS patients, which might be the consequence of decreased Rac-ERK1/2 and PI-3K activation within these cells.[Abstract] [Full Text] [Related] [New Search]