These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: ATP-sensitive K+ channel-dependent regulation of glucagon release and electrical activity by glucose in wild-type and SUR1-/- mouse alpha-cells. Author: Gromada J, Ma X, Høy M, Bokvist K, Salehi A, Berggren PO, Rorsman P. Journal: Diabetes; 2004 Dec; 53 Suppl 3():S181-9. PubMed ID: 15561909. Abstract: Patch-clamp recordings and glucagon release measurements were combined to determine the role of plasma membrane ATP-sensitive K+ channels (KATP channels) in the control of glucagon secretion from mouse pancreatic alpha-cells. In wild-type mouse islets, glucose produced a concentration-dependent (half-maximal inhibitory concentration [IC50]=2.5 mmol/l) reduction of glucagon release. Maximum inhibition (approximately 50%) was attained at glucose concentrations >5 mmol/l. The sulfonylureas tolbutamide (100 micromol/l) and glibenclamide (100 nmol/l) inhibited glucagon secretion to the same extent as a maximally inhibitory concentration of glucose. In mice lacking functional KATP channels (SUR1-/-), glucagon secretion in the absence of glucose was lower than that observed in wild-type islets and both glucose (0-20 mmol/l) and the sulfonylureas failed to inhibit glucagon secretion. Membrane potential recordings revealed that alpha-cells generate action potentials in the absence of glucose. Addition of glucose depolarized the alpha-cell by approximately 7 mV and reduced spike height by 30% Application of tolbutamide likewise depolarized the alpha-cell (approximately 17 mV) and reduced action potential amplitude (43%). Whereas insulin secretion increased monotonically with increasing external K+ concentrations (threshold 25 mmol/l), glucagon secretion was paradoxically suppressed at intermediate concentrations (5.6-15 mmol/l), and stimulation was first detectable at >25 mmol/l K+. In alpha-cells isolated from SUR1-/- mice, both tolbutamide and glucose failed to produce membrane depolarization. These effects correlated with the presence of a small (0.13 nS) sulfonylurea-sensitive conductance in wild-type but not in SUR1-/- alpha-cells. Recordings of the free cytoplasmic Ca2+ concentration ([Ca2+]i) revealed that, whereas glucose lowered [Ca2+]i to the same extent as application of tolbutamide, the Na+ channel blocker tetrodotoxin, or the Ca2+ channel blocker Co2+ in wild-type alpha-cells, the sugar was far less effective on [Ca2+]i in SUR1-/- alpha-cells. We conclude that the KATP channel is involved in the control of glucagon secretion by regulating the membrane potential in the alpha-cell in a way reminiscent of that previously documented in insulin-releasing beta-cells. However, because alpha-cells possess a different complement of voltage-gated ion channels involved in action potential generation than the beta-cell, moderate membrane depolarization in alpha-cells is associated with reduced rather than increased electrical activity and secretion.[Abstract] [Full Text] [Related] [New Search]