These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of recombinant human bone morphogenetic protein-4 dose on bone formation in a rat calvarial defect model.
    Author: Pang EK, Im SU, Kim CS, Choi SH, Chai JK, Kim CK, Han SB, Cho KS.
    Journal: J Periodontol; 2004 Oct; 75(10):1364-70. PubMed ID: 15562914.
    Abstract:
    BACKGROUND: Bone morphogenetic proteins (BMPs) are being evaluated for periodontal and bone regenerative therapy. The objective of this study was to evaluate the effect of recombinant human bone morphogenetic protein-4 (rhBMP-4) dose on local bone formation in a rat calvaria defect model. METHODS: Calvarial, 8 mm diameter, critical-size osteotomy defects were created in 140 male Sprague-Dawley rats. Seven groups of 20 animals each received either 1) rhBMP-4 (2.5 microg) in an absorbable collagen sponge (ACS) carrier, 2) rhBMP-4 (5 microg)/ACS, 3) rhBMP-4 (2.5 microg) in a beta-tricalcium phosphate (beta-TCP) carrier, 4) rhBMP-4 (5 microg)/beta-TCP, 5) ACS or 6) beta-TCP carrier controls, or 7) a sham-surgery control, and were evaluated by histologic and histometric parameters following a 2- or 8-week healing interval (10 animals/group/healing interval). RESULTS: Surgical implantation of rhBMP-4/ACS and rhBMP-4/beta-TCP resulted in enhanced local bone formation at both 2 and 8 weeks. Within the dose range examined, rhBMP-4 did not exhibit an appreciable dose-dependent response. Defect closure was not significantly different between the rhBMP-4/ACS and rhBMP-4/beta-TCP groups. New bone area of the rhBMP-4/ beta-TCP group was significantly greater than that of the rhBMP-4/ ACS group; however, bone density in the rhBMP-4/ACS group was significantly greater than that in the rhBMP-4/beta-TCP group at 8 weeks (P < 0.05). CONCLUSIONS: rhBMP-4 combined with ACS or beta-TCP has a significant potential to induce bone formation in the rat calvaria defect model. Within the selected rhBMP-4 dose range and observation interval, there appeared to be no meaningful differences in bone formation.
    [Abstract] [Full Text] [Related] [New Search]