These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cytotoxic activity of a new paclitaxel formulation, Pacliex, in vitro and in vivo. Author: Hassan S, Dhar S, Sandström M, Arsenau D, Budnikova M, Lokot I, Lobanov N, Karlsson MO, Larsson R, Lindhagen E. Journal: Cancer Chemother Pharmacol; 2005 Jan; 55(1):47-54. PubMed ID: 15565443. Abstract: BACKGROUND: The paclitaxel formulation, Taxol (Bristol-Myers Squibb), is one of the most effective anticancer agents used today. However; it is associated with serious side effects believed to be caused by the Cremophor EL used for its formulation. AIM: To evaluate the cytotoxic activity of a new paclitaxel formulation, Pacliex (developed by Oasmia Pharmaceutical, Uppsala, Sweden), a mixed micelles preparation in which an amphiphilic synthetic derivative of retinoic acid replaced Cremophor EL/ethanol vehicle. METHOD: In this study, three model systems were used to evaluate the cytotoxic activity of Pacliex and other paclitaxel preparations. The cytotoxic activities of Pacliex, Taxol and paclitaxel in ethanol were investigated against a panel of ten human tumor cell lines using the fluorometric microculture cytotoxicity assay (FMCA). Low- and high- proliferating in vitro hollow fiber model of two cell lines, the leukemia CCRF-CEM and the myeloma RPMI 8226/S cell lines, were used to assess the cytotoxic activity of the three formulations. The in vivo hollow fiber model of the two cell lines was used for assessment of Pacliex and Taxol activity. The [3-4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay was utilized to analyze the in vitro and in vivo hollow fiber data. RESULT: Pacliex was somewhat more effective than Taxol in the more sensitive cell lines. The activity of Taxol was more pronounced in the resistant cell lines due to an additive effect of the vehicle used. The three formulations showed similar activity in both the low- and high-proliferating in vitro hollow fiber cultures. The in vivo hollow fiber cytotoxic activity of Pacliex was similar to that of Taxol. Putting all the results together, it was found that all the three formulations had similar in vitro and in vivo activity. CONCLUSION: The three in vitro and in vivo models confirmed the similarity of the cytotoxic activities of Pacliex and Taxol. Considering the above, Pacliex could be an interesting alternative Cremophor EL-free formulation of paclitaxel.[Abstract] [Full Text] [Related] [New Search]