These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis of monodisperse high-aspect-ratio colloidal silicon and silica rods.
    Author: van Kats CM, Johnson PM, van den Meerakker JE, van Blaaderen A.
    Journal: Langmuir; 2004 Dec 07; 20(25):11201-7. PubMed ID: 15568876.
    Abstract:
    We describe the synthesis and the physical properties of suspensions of colloidal silicon and silica rodlike particles. In addition to pure silicon and pure silica rods, we have also synthesized silicon rods with a silica shell and silica rods with a fluorescent silica layer. Pre-patterned p-type (100) silicon wafers were electrochemically etched in electrolyte solutions containing hydrogen fluoride. By the current density being varied while etching, macropores were etched with controllable modulated pore diameters. These silicon structures were transformed into rods with indentations 5.5 mum apart and with lengths up to 100 mum using iterative oxidation in air and dissolution of the silica by HF. Complete oxidation of these rods was also achieved. Sonication of the modulated rods resulted in monodisperse particles of 5.5 mum length and 300 nm width. A high yield of 10(12) particles, or more, is possible with this method. At high concentrations, these particles show nematic ordering in charge-stabilized suspensions. The oxidized silica outer layer of the silicon rods makes the further growth of silica in solution or on a wafer possible. This allows for control of the particles' interaction potential. Labeling with a fluorescent dye and index matching of the complete silica rods enable the study of concentrated dispersions quantitatively, on a single particle level, with confocal microscopy. Because of their high refractive index in the near-IR, the nematic phases of rods with a silica core are also interesting for photonic applications.
    [Abstract] [Full Text] [Related] [New Search]