These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Adenosine A1 receptor blockade mimics caffeine's attenuation of ethanol-induced motor incoordination.
    Author: Connole L, Harkin A, Maginn M.
    Journal: Basic Clin Pharmacol Toxicol; 2004 Dec; 95(6):299-304. PubMed ID: 15569276.
    Abstract:
    The effects of co-administration of caffeine and ethanol were assessed on the motor coordination of rats on the accelerating rotarod (accelerod). Ethanol (2.5 g/kg, orally) decreased motor performance on the accelerod. Co-administration of caffeine (5 and 20 mg/kg, orally) dose-dependently attenuated this ethanol-induced deficit. Caffeine (20 mg/kg, orally) alone did not affect motor performance in the test. As caffeine is a non-selective adenosine receptor antagonist the ability of adenosine A(1) and A(2A) receptor blockade to attenuate ethanol-induced motor incoordination was determined. Pre-treatment with the adenosine A(1) receptor antagonist DPCPX (5 mg/kg, intraperitoneally) attenuated ethanol (2.5 g/kg, orally)-induced motor incoordination. By contrast, prior administration of the adenosine A(2A) selective antagonist SCH 58261 (10 mg/kg intraperitoneally) had no effect on the ethanol-induced motor deficit. These data demonstrate that adenosine A(1) receptor blockade mimics the inhibitory action of caffeine on ethanol-induced motor incorordination, and may contribute to the ability of caffeine to offset the acute intoxicating actions of ethanol.
    [Abstract] [Full Text] [Related] [New Search]