These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The hydratase activity of malonate semialdehyde decarboxylase: mechanistic and evolutionary implications.
    Author: Poelarends GJ, Serrano H, Johnson WH, Hoffman DW, Whitman CP.
    Journal: J Am Chem Soc; 2004 Dec 08; 126(48):15658-9. PubMed ID: 15571384.
    Abstract:
    Malonate semialdehyde decarboxylase (MSAD) is a member of the tautomerase superfamily, a group of structurally homologous proteins that have a characteristic beta-alpha-beta-fold and a catalytic amino-terminal proline. In addition to its physiological decarboxylase activity, the conversion of malonate semialdehyde to acetaldehyde and carbon dioxide, the enzyme has now been found to display a promiscuous hydratase activity, converting 2-oxo-3-pentynoate to acetopyruvate, with a kcat/Km value of 6.0 x 102 M-1 s-1. Pro-1 and Arg-75 are critical for both activities, and the pKa of Pro-1 was determined to be approximately 9.2 by a direct 15N NMR titration. These observations implicate a decarboxylation mechanism in which Pro-1 polarizes the carbonyl oxygen of substrate by hydrogen bonding and/or an electrostatic interaction. Arg-75 may position the carboxylate group into a favorable orientation for decarboxylation. Both the hydratase activity and the pKa value of Pro-1 are shared with trans-3-chloroacrylic acid dehalogenase, another tautomerase superfamily member that precedes MSAD in a bacterial degradation pathway for trans-1,3-dichloropropene. Hence, MSAD and CaaD could have evolved by divergent evolution from a common ancestral protein, retaining the necessary catalytic components for the conjugate addition of water.
    [Abstract] [Full Text] [Related] [New Search]