These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Alteration of a protease-sensitive region of Pseudomonas exotoxin prolongs its survival in the circulation of mice. Author: Brinkmann U, Pai LH, FitzGerald DJ, Pastan I. Journal: Proc Natl Acad Sci U S A; 1992 Apr 01; 89(7):3065-9. PubMed ID: 1557414. Abstract: Pseudomonas exotoxin A (PE) is a single-chain 66-kDa polypeptide that kills eukaryotic cells by ADP-ribosylation of translational elongation factor 2. PE is composed of three major structural domains whose functions are binding of cells (I), translocation (II), and ADP-ribosylation (III). Here we describe a protease cleavage target that is located near arginine-490 on the surface of domain III. We made several different types of mutations near arginine-490. Deletion of arginine-490 or replacement of arginine-490 and -492 with serine and lysine or with two lysines resulted in protease-resistant molecules that were fully cytotoxic and had normal ADP-ribosylation activity. However, the half-life in mouse blood of the PE delta 490 mutant was 24 min whereas that of PE was 13 min. Furthermore, two PE mutants that were protease-hypersensitive, PEGlu246,247,249 and PEGlu57,246,247,249 (in which glutamate residues replace basic residues at the indicated positions), had very short half-lives. These data indicate that protease sensitivity is an important determinant in the half-life of PE in the circulation and suggest that the half-life of other proteins may be prolonged by removal of protease sites. Deletion of arginine-492 or the replacement of amino acids 486-491 with three glycines markedly diminished ADP-ribosylation activity and cytotoxicity, indicating that this region of domain III is also important for catalytic activity.[Abstract] [Full Text] [Related] [New Search]