These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Strong calcium entry activates mitochondrial superoxide generation, upregulating kinase signaling in hippocampal neurons.
    Author: Hongpaisan J, Winters CA, Andrews SB.
    Journal: J Neurosci; 2004 Dec 01; 24(48):10878-87. PubMed ID: 15574738.
    Abstract:
    Large increases in cytosolic free Ca2+ ([Ca2+]i) activate several kinases that are important for neuronal plasticity, including Ca2+/calmodulin-dependent kinase II (CaMKII), protein kinase A (PKA), and protein kinase C (PKC). Because it is also known, mainly in non-neuronal systems, that superoxide radicals (O2-) activate these (and other) kinases and because O2- generation by mitochondria is in part [Ca2+]i dependent, we examined in hippocampal neurons the relationship between Ca2+ entry, O2- production, and kinase activity. We found that, after large stimulus-induced [Ca2+]i increases, O2- selectively produced by mitochondria near plasmalemmal sites of Ca2+ entry acts as a modulator to upregulate the two kinases, namely, CaMKII and PKA, whose activities are directly or indirectly phosphorylation dependent. The common mechanism involves O2- inhibition of inactivating protein phosphatases. Conversely, because small [Ca2+]i increases do not promote mitochondrial respiration and O2- generation, weak stimuli favor enhanced phosphatase activity, which therefore leads to suppressed kinase activity. Enhanced O2- production also promoted PKC activity but by a phosphatase-independent pathway. These results suggest that Ca2+-dependent upregulation of mitochondrial O2- production may be a general mechanism for linking Ca2+ entry to enhanced kinase activity and therefore to synaptic plasticity. This mechanism also represents yet another way that mitochondria, acting as calcium sensors, can play a role in neuronal signal transduction.
    [Abstract] [Full Text] [Related] [New Search]