These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A quantitative analysis of 3-D coronary modeling from two or more projection images.
    Author: Movassaghi B, Rasche V, Grass M, Viergever MA, Niessen WJ.
    Journal: IEEE Trans Med Imaging; 2004 Dec; 23(12):1517-31. PubMed ID: 15575409.
    Abstract:
    A method is introduced to examine the geometrical accuracy of the three-dimensional (3-D) representation of coronary arteries from multiple (two and more) calibrated two-dimensional (2-D) angiographic projections. When involving more then two projections, (multiprojection modeling) a novel procedure is presented that consists of fully automated centerline and width determination in all available projections based on the information provided by the semi-automated centerline detection in two initial calibrated projections. The accuracy of the 3-D coronary modeling approach is determined by a quantitative examination of the 3-D centerline point position and the 3-D cross sectional area of the reconstructed objects. The measurements are based on the analysis of calibrated phantom and calibrated coronary 2-D projection data. From this analysis a confidence region (alpha degrees approximately equal to [35 degrees - 145 degrees]) for the angular distance of two initial projection images is determined for which the modeling procedure is sufficiently accurate for the applied system. Within this angular border range the centerline position error is less then 0.8 mm, in terms of the Euclidean distance to a predefined ground truth. When involving more projections using our new procedure, experiments show that when the initial pair of projection images has an angular distance in the range alpha degrees approximately equal to [35 degrees - 145 degrees], the centerlines in all other projections (gamma = 0 degrees - 180 degrees) were indicated very precisely without any additional centering procedure. When involving additional projection images in the modeling procedure a more realistic shape of the structure can be provided. In case of the concave segment, however, the involvement of multiple projections does not necessarily provide a more realistic shape of the reconstructed structure.
    [Abstract] [Full Text] [Related] [New Search]