These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Determination of absolute configuration using density functional theory calculation of optical rotation: chiral alkanes. Author: McCann DM, Stephens PJ, Cheeseman JR. Journal: J Org Chem; 2004 Dec 10; 69(25):8709-17. PubMed ID: 15575747. Abstract: The recently developed Gauge-Invariant (Including) Atomic Orbital (GIAO) based Time-Dependent Density Functional Theory (TDDFT) methodology for the calculation of transparent spectral region optical rotations of chiral molecules provides a new approach to the determination of absolute configurations. Here, we discuss the application of the TDDFT/GIAO methodology to chiral alkanes. We report B3LYP/aug-cc-pVDZ calculations of the specific rotations of the 22 chiral alkanes, 2-23, of well-established Absolute Configuration. The average absolute deviation of calculated and experimental [alpha](D) values for molecules 2-22 is 24.8. In two of the molecules 2-23, trans-pinane, 10, and endo-isocamphane, 13, the sign of [alpha](D) is incorrectly predicted. Our results demonstrate that absolute configurations of alkanes can be reliably assigned by using B3LYP/aug-cc-pVDZ TDDFT/GIAO calculations if, but only if, [alpha](D) is significantly greater than 25. In the case of (-)-anti-trans-anti-trans-anti-trans-perhydrotriphenylene, 1, [alpha](D) is -93 and TDDFT/GIAO calculations reliably lead to the absolute configuration R(-).[Abstract] [Full Text] [Related] [New Search]