These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effect of merulinic acid on biomembranes. Author: Stasiuk M, Jaromin A, Kozubek A. Journal: Biochim Biophys Acta; 2004 Dec 15; 1667(2):215-21. PubMed ID: 15581858. Abstract: Merulinic acid (heptadecenylresorcinolic acid, resorcinolic acid) is one of the members of resorcinolic lipids, the natural amphiphilic long-chain homologues of orcinol (1,3-dihydroksy-5-methylbenzene). In the present study, membrane properties of merulinic acid were investigated. Merulinic acid exhibits strong haemolytic activity against sheep erythrocytes (EH50 of 5+/-2 microM) regardless of the form of its application-direct injection into the erythrocyte suspension or injection as merulinic acid-enriched liposomes. The lysis of erythrocytes induced by merulinic acid was inhibited by the presence of divalent cations. The effectivity of the protection of erythrocytes was highest for Zn2+ and weakest for Mn2+. Merulinic acid at low concentrations also exhibits the ability for protection of cells against their lysis in hypoosmotic solutions. This protective effect is significant as, at 10 microM concentration of merulinic acid, the extent of osmotically induced cell lysis is reduced by approximately 40%. Merulinic acid induces increased permeability of liposomal vesicles. This effect was shown to be dependent on the composition of liposomal bilayer and it was stronger when lipid bilayer contained glycolipids (MGDG and DGDG) and sphingomyelin. Changes of TMA-DPH and NBD-PE fluorescence polarization show that the degree of merulinic acid incorporation into liposomal membrane is not very high. The polar "heads" of the molecules of investigated compounds are localized on the level of fatty acid's ester bonds in phospholipid molecules. Merulinic acid caused the increased fluorescence of the membrane potential fragile probe. This indicated an alteration of the surface charge and a decrease of the local pH at the membrane surface. This effect was visible in both low- and high-ionic strength environment. Merulinic acid causes also a decrease in activity of the membrane-bound enzyme acetylcholinesterase.[Abstract] [Full Text] [Related] [New Search]