These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Morphologic alterations in ovine placenta and fetal liver following induced severe placental insufficiency.
    Author: Cheung CY, Bogic L, Gagnon R, Harding R, Brace RA.
    Journal: J Soc Gynecol Investig; 2004 Dec; 11(8):521-8. PubMed ID: 15582496.
    Abstract:
    OBJECTIVES: Umbilical-placental embolization with microspheres has been used as a model of placental insufficiency and intrauterine growth restriction (IUGR). However, the effects of embolization on placental structure and organ morphology of the resulting IUGR fetus are relatively unexplored. In this study using ovine fetuses, we determined the location and distribution of microspheres within the placenta and explored the extent of placental and fetal organ morphologic changes induced by placental embolization. We hypothesized that microspheres administered into the umbilical circulation over 4 days would cause placental damage without significant morphologic alterations in fetal kidney or liver. METHODS: Eleven pregnant sheep at 118 +/- 1 (SE) days' gestation were studied. In six fetuses, embolization was induced by injections of 15-microm diameter microspheres on 4 successive days into the fetal descending aorta proximal to the umbilical arteries. Five fetuses served as time controls. RESULTS: In embolized fetuses, microspheres were detected in the placenta embedded in the fetal cytotrophoblastic layer or maternal parenchyma adjacent to villous cytotrophoblasts. Fetal cytotrophoblasts appeared normal except for loss of distinct separation between fetal and maternal cell layers. Microspheres were also detected in the fetal membranes within capillaries. The body weights of embolized fetuses were lower than controls, as were the body weight-normalized liver but not kidney weights. In the liver of the embolized fetuses, the number of hematopoietic cell clusters was markedly reduced, whereas the fetal kidneys appeared normal. CONCLUSIONS: We conclude that after 4 days of umbilical-placental embolization, microspheres were concentrated at the fetal villi proximal to the apical maternal-fetal interface and in the fetal membranes. There were noticeable morphologic changes in the embolized placentas, with no apparent gross damage to the placenta. The reduction in fetal liver weight and liver extramedullary hematopoietic cell abundance associated with embolization may predispose the fetus to alterations in liver function that could persist after birth.
    [Abstract] [Full Text] [Related] [New Search]