These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: High prevalence of natural Chlamydophila species infection in calves.
    Author: Jee J, Degraves FJ, Kim T, Kaltenboeck B.
    Journal: J Clin Microbiol; 2004 Dec; 42(12):5664-72. PubMed ID: 15583297.
    Abstract:
    We investigated the acquisition and prevalence of Chlamydophila sp. infection in calves. Specimens were collected at weekly intervals from birth to week 12 postpartum from 40 female Holstein calf-dam pairs in a dairy herd. Real-time PCR detected, quantified, and differentiated Chlamydophila 23S rRNA gene DNA from vaginal cytobrush swabs and milk samples. Chemiluminescence enzyme-linked immunosorbent assay with lysed Chlamydophila abortus or Chlamydophila pecorum elementary body antigens quantified antibodies against Chlamydophila spp. in sera. Chlamydophila sp. DNA was found in 61% of calves and 20% of dams in at least one positive quantitative PCR. In calves, clinically inapparent C. pecorum infection with low organism loads was fivefold more prevalent than C. abortus infection and was most frequently detected by vaginal swabs compared to rectal or nasal swabs. In dams, C. abortus dominated in milk and C. pecorum dominated in the vagina. The group size of calves correlated positively (P < 0.01) with Chlamydophila infection in quadratic, but not linear, regression. Thus, a doubling of the group size was associated with a fourfold increase in frequency and intensity of Chlamydophila infection. For groups of 14 or 28 calves, respectively, logistic regression predicted a 9 or 52% probability of infection of an individual calf and a 52 or 99.99% probability of infection of the group. Anti-Chlamydophila immunoglobulin M antibodies in Chlamydophila PCR-positive calves and dams and in dams that gave birth to calves that later became positive were significantly higher than in PCR-negative animals (P </= 0.02). Collectively, crowding strongly enhances the frequency and intensity of highly prevalent Chlamydophila infections in cattle.
    [Abstract] [Full Text] [Related] [New Search]