These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The kinase domain of death-associated protein kinase is inhibitory for tubulointerstitial fibrosis in chronic obstructive nephropathy. Author: Yukawa K, Kishino M, Hoshino K, Shirasawa N, Kimura A, Tsubota Y, Owada-Makabe K, Bai T, Tanaka T, Ueyama T, Ichinose M, Takeda K, Akira S, Maeda M. Journal: Int J Mol Med; 2005 Jan; 15(1):73-8. PubMed ID: 15583830. Abstract: Death-associated protein kinase (DAPK) is a Ca2+/calmodulin-dependent serine/threonine kinase that is thought to mediate apoptosis. We have shown that the kinase domain of DAPK is crucial for the induction of renal tubular cell apoptosis in chronic obstructive uropathy (COU) created by unilateral ureteral ligation. DAPK-mutant mice, generated by deletion of 74 amino acids from the catalytic kinase domain, were used to investigate the role of the DAPK kinase domain in renal fibrosis following COU. Interstitial collagen and alpha-smooth muscle actin (alpha-SMA) expressions in situ were compared between obstructed kidneys in wild-type and mutant mice. As a result, tubulointerstitial fibrosis, as quantified by interstitial collagen expression, was significantly augmented in mutant kidneys compared with wild-type kidneys following COU. Furthermore, deletion of the kinase domain from DAPK significantly increased the appearance of alpha-SMA-positive myofibroblasts in the renal interstitium during COU. Thus, our results suggest that the kinase domain deleted by gene targeting plays a suppressive role for the development of renal fibrosis through inhibition of the tubular epithelial-to-mesenchymal transition in a mouse model of COU.[Abstract] [Full Text] [Related] [New Search]