These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Maintenance and self-renewal of long-term reconstituting hematopoietic stem cells supported by amniotic fluid.
    Author: Barria E, Mikels A, Haas M.
    Journal: Stem Cells Dev; 2004 Oct; 13(5):548-62. PubMed ID: 15588512.
    Abstract:
    The maintenance and self-renewal of hematopoietic stem cells (HSC) in culture is a central focus of hematopoietic stem cell research. In vivo, the balance between HSC differentiation, apoptosis, and self-renewal is regulated at the endosteal surface niche in the bone marrow (BM). In feeder-free cultures, the fate of HSC is affected by growth factors/interleukins and serum, which affect the balance between self-renewal, differentiation, and apoptosis and lead to the rapid loss of multipotent HSC. We report that substituting human amniotic fluid (AF) for serum in HSC cultures provides a growth milieu in which HSC differentiation and apoptosis are down-regulated and multipotent HSC are maintained. Murine BM cells were cultured in serum-free medium containing 25% amniotic fluid and stem cell factor (SCF) only, "AF/SCF" cultures. Compared with serum and multiple growth factor-containing medium, cells cultured for 4 weeks in AF/SCF medium displayed downregulation of differentiation markers while maintaining a high fraction of cells expressing Sca1 (51.8%) and c-kit (10.2%). Reconstitution of lethally irradiated C57BL/6 (Ly5.2) mice with cultured Ly5.1 BM cells resulted in high levels of (cultured) donor cells in primary (78 +/- 19.4% and 94.32 +/- 2.5%, 10(5) and 10(6) cells injected, respectively) and secondary (96.5%) recipients at 8 and 11 months post-transplantation. Hence, long-term repopulation with AF/SCF cultured BM cells was maintained. Addition to the cultures of 10% serum, interleukin (IL)-3, IL-6, granulocyte colony stimulating factor (G-CSF), or granulocyte-macrophage colony stimulating factor (GM-CSF), singly or in combination, resulted in rapid differentiation and apoptosis, leading to the total loss of HSC.
    [Abstract] [Full Text] [Related] [New Search]