These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Isolation and characterization of a humoral factor that stimulates transcription of the acyl-CoA-binding protein in the pheromone gland of the silkmoth, Bombyx mori.
    Author: Ohnishi A, Koshino H, Takahashi S, Esumi Y, Matsumoto S.
    Journal: J Biol Chem; 2005 Feb 11; 280(6):4111-6. PubMed ID: 15590686.
    Abstract:
    Acyl-CoA binding protein (ACBP) is a highly conserved 10-kDa intracellular lipid-binding protein that binds straight-chain (C14-C22) acyl-CoA esters with high affinity and is expressed in a wide variety of species ranging from yeast to mammals. Functionally, ACBP can act as an acyl-CoA carrier or as an acyl-CoA pool maker within the cell. Much work on the biochemical properties regarding the ACBP has been performed using various vertebrate and plant tissues, as well as different types of cells in culture, the regulatory mechanisms underlying ACBP gene expression have remained poorly understood. By exploiting the unique sex pheromone production system in the moth pheromone gland (PG), we report that transcription of a specific ACBP termed pheromone gland ACBP is triggered by a hemolymph-based humoral factor. Following purification and structure elucidation by means of high resolution electrospray ionization mass spectrometry and NMR analyses, in conjunction with stereochemical analyses using acid hydrolysates, the humoral factor was identified to be beta-D-glucosyl-O-L-tyrosine. Examination of the hemolymph titers during development revealed that the amount of beta-D-glucosyl-O-L-tyrosine dramatically rose prior to eclosion and reached a maximum of 5 mg/ml (about 1 mg/pupa) on the day preceding eclosion, which was consistent with the effective dose of beta-D-glucosyl-O-L-tyrosine in stimulating pheromone gland ACBP transcription in vivo. Furthermore, in vitro assays using trimmed PG indicated that beta-D-glucosyl-O-L-tyrosine acts directly on the PG. These results provide the first evidence that transcription of some ACBPs can be triggered by specific humoral factors.
    [Abstract] [Full Text] [Related] [New Search]