These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Capsaicin-induced bronchoconstriction in the guinea-pig: contribution of vagal cholinergic reflexes, local axon reflexes and their modulation by BW443C81.
    Author: Buchan P, Adcock JJ.
    Journal: Br J Pharmacol; 1992 Feb; 105(2):448-52. PubMed ID: 1559133.
    Abstract:
    1 The objective of the study was to investigate the central vagal and local axon reflex components of bronchoconstrictor responses evoked by inhalation of capsaicin aerosol in anaesthetized guinea-pigs. This was accomplished by comparing the effects of bilateral vagotomy, atropine and the peripherally-acting polar enkephalin analogue, BW443C81, on bronchoconstrictor responses evoked by capsaicin. The effects of codeine were also determined. 2 Aerosols of capsaicin were generated from a 0.9 microgram ml-1 solution. Inhalation of capsaicin aerosol in 5, 10 and 15 breaths evoked dose-related bronchoconstrictor responses. The responses were immediate in onset and of extended duration. 3 Capsaicin-induced bronchoconstrictor responses were significantly inhibited following bilateral vagotomy or atropine (0.3 mg kg-1, i.v.) pretreatment by 46% +/- 14% (P less than 0.05) and 59% +/- 13% (P less than 0.01), respectively. 4 Administration of BW443C81 by intravenous infusion (3, 30 and 100 micrograms kg-1 min-1) caused a significant inhibition of capsaicin-induced bronchoconstrictor responses which achieved a greater maximum than either bilateral vagotomy or atropine. Codeine (100 micrograms kg-1 min-1, i.v.) did not significantly inhibit the bronchoconstrictor responses. 5 Inhibition of capsaicin-induced bronchoconstrictor responses by BW443C81 (30 micrograms kg-1 min-1, i.v.) was significantly (P less than 0.05) reduced by the peripherally-acting opioid antagonist N-methyl nalorphine (100 micrograms kg-1 min-1, i.v.). 6 These results show that capsaicin-induced bronchoconstrictor responses are mediated by at least two mechanisms, a vagal and/or cholinergic reflex pathway and a non-cholinergic pathway. BW443C81, but not codeine, significantly inhibited (P < 0.005) both mechanisms of capsaicin-induced bronchoconstriction probably by an action on peripheral opioid receptors located on vagal sensory nerves.
    [Abstract] [Full Text] [Related] [New Search]