These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Added value of attenuation-corrected Tc-99m tetrofosmin SPECT for the detection of myocardial viability: comparison with FDG SPECT. Author: Slart RH, Bax JJ, Sluiter WJ, van Veldhuisen DJ, Jager PL. Journal: J Nucl Cardiol; 2004; 11(6):689-96. PubMed ID: 15592192. Abstract: BACKGROUND: The aim of this study was to evaluate the value of attenuation correction of technetium 99m tetrofosmin single photon emission computed tomography (SPECT) imaging for the detection of myocardial viability. METHODS AND RESULTS: A head-to-head comparison between resting Tc-99m tetrofosmin SPECT and fluorine 18 fluorodeoxyglucose (FDG) SPECT was performed. Both the noncorrected and attenuation-corrected Tc-99m tetrofosmin SPECT images were compared with the FDG images that served as the reference for viability. Consecutive patients (n = 33) with chronic coronary artery disease and left ventricular dysfunction were included. Segmental Tc-99m tetrofosmin and FDG data were displayed in polar maps (17-segment model), and the segments were normalized to peak activity by use of the 4D-MSPECT software program. Segments with normalized FDG activity greater than 50% were considered viable. A similar cutoff value to assess viability was used for the noncorrected and attenuation-corrected Tc-99m tetrofosmin images. Regional contractile function was determined from the gated Tc-99m tetrofosmin images and scored as normokinesia, hypokinesia, or akinesia/dyskinesia. Of all segments, 482 (85%) were viable on FDG SPECT. Of these, 427 (89%) were classified as viable with noncorrected Tc-99m tetrofosmin. Thus 55 (11%) were underestimated with noncorrected Tc-99m tetrofosmin SPECT; these segments were mainly located in the inferior and inferoseptal regions. Attenuation correction changed the classification of 39 (70%) of the underestimated segments to viable. By use of attenuation correction, the agreement between Tc-99m tetrofosmin and FDG imaging improved from 84% to 90%. Similar observations were made when the analysis was restricted to the dysfunctional segments. CONCLUSION: The addition of attenuation correction to Tc-99m tetrofosmin SPECT significantly improved detection of myocardial viability in patients with chronic coronary artery disease, although minimal underestimation of viability remained as compared with FDG SPECT imaging.[Abstract] [Full Text] [Related] [New Search]