These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of tetramethylrhodaminyl-phalloidin binding to cellular F-actin.
    Author: Cano ML, Cassimeris L, Joyce M, Zigmond SH.
    Journal: Cell Motil Cytoskeleton; 1992; 21(2):147-58. PubMed ID: 1559266.
    Abstract:
    Fluorescent derivatives of phalloidin are widely used to measure filamentous actin (F-actin) levels and to stabilize F-actin. We have characterized the kinetics and affinity of binding of tetramethylrhodaminyl (TRITC)-phalloidin to rabbit skeletal muscle F-actin and to F-actin in lysates of rabbit polymorphonuclear leukocytes (PMNs). We have defined conditions where TRITC-phalloidin can be used to inhibit F-actin depolymerization and to quantify F-actin without prior fixation. By equilibrium measurements, the affinity of TRITC-phalloidin binding to rabbit skeletal muscle F-actin (pyrene labeled) or to PMN lysate F-actin was 1-4 x 10(-7) M. In both cases, the stoichiometry of binding was approximately 1:1. Kinetic measurements of TRITC-phalloidin binding to PMN lysate F-actin resulted in an association rate constant of 420 +/- 120 M-1 sec-1 and a dissociation rate constant of 8.3 +/- 0.9 x 10(-5) sec-1. The affinity calculated from the kinetic measurements (2 +/- 1 x 10(-7) M) agreed well with that obtained by equilibrium measurements. The rate with which 0.6 microM TRITC-phalloidin inhibited 0.1 microM pyrenyl F-actin depolymerization (90% inhibition in 10 sec) was much faster than the rate of binding to pyrenyl F-actin (less than 1% bound in 10 sec), suggesting that phalloidin binds to filament ends more rapidly than to the rest of the filament. We show that TRITC-phalloidin can be used to measure F-actin levels in cell lysates when G-actin is also present (i.e., in cell lysates at high concentrations) if DNase I is included to prevent phalloidin-induced polymerization.
    [Abstract] [Full Text] [Related] [New Search]