These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The ionophore nigericin transports Pb2+ with high activity and selectivity: a comparison to monensin and ionomycin. Author: Hamidinia SA, Tan B, Erdahl WL, Chapman CJ, Taylor RW, Pfeiffer DR. Journal: Biochemistry; 2004 Dec 21; 43(50):15956-65. PubMed ID: 15595852. Abstract: The K(+) ionophore nigericin is shown to be highly effective as an ionophore for Pb(2+) but not other divalent cations, including Cu(2+), Zn(2+), Cd(2+), Mn(2+), Co(2+), Ca(2+), Ni(2+), and Sr(2+). Among this group a minor activity for Cu(2+) transport is seen, while for the others activity is near or below the limit of detection. The selectivity of nigericin for Pb(2+) exceeds that of ionomycin or monensin and arises, at least in part, from a high stability of nigericin-Pb(2+) complexes. Plots of log rate vs log Pb(2+) or log ionophore concentration, together with the pH dependency, indicate that nigericin transports Pb(2+) via the species NigPbOH and by a mechanism that is predominately electroneutral. As with monensin and ionomycin, a minor fraction of activity may be electrogenic, based upon a stimulation of rate that is produced by agents which prevent the formation of transmembrane electrical potentials. Nigericin-catalyzed Pb(2+) transport is not inhibited by physiological concentrations of Ca(2+) or Mg(2+) and is only modestly affected by K(+) and Na(+) concentrations in the range of 0-100 mM. These characteristics, together with higher selectivity and efficiency, suggest that nigericin may be more useful than monensin in the treatment of Pb intoxication.[Abstract] [Full Text] [Related] [New Search]