These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Area summation and masking.
    Author: Meese TS.
    Journal: J Vis; 2004 Nov 03; 4(10):930-43. PubMed ID: 15595896.
    Abstract:
    At detection threshold, sensitivity improves as the area of a test grating increases, but not when the test is placed on a pedestal and the task becomes contrast discrimination (G. E. Legge & J. M. Foley, 1980). This study asks whether the abolition of area summation is specific to the situation where mask and test stimuli have the same spatial frequency and orientation ("within-channel" masking) or is more general, also occurring when mask and test stimuli are very different ("cross-channel" masking). Threshold versus contrast masking functions were measured where the test and mask were either both small (SS), both large (LL), or small and large, respectively (SL). For within-channel masking, facilitation and area summation were found at low mask contrasts, but the results for SS and LL converged at intermediate contrasts and above, replicating Legge and Foley (1980). For all three observers, less facilitation was found for SL than for SS. For cross-channel masking, area summation occurred across the entire masking function and results for SS and SL were identical. The results for the entire data set were well fit by an extended version of a contrast masking model (J. M. Foley, 1994) in which the weights of excitatory and suppressive surround terms were free parameters. I conclude that (i) there is no empirical abolition of area summation for cross-channel masking, (ii) within-channel area summation can be abolished empirically without being disabled in the model, (iii) observers are able to select the area of spatial integration, but not suppression, (iv) extending a cross-channel mask to the surround has no effect on contrast detection, and (v) there is a formal similarity between area summation and contrast adaptation.
    [Abstract] [Full Text] [Related] [New Search]