These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Transforming growth factor (TGF)-beta in conjunction with H-ras activation promotes malignant progression of MCF10A breast epithelial cells. Author: Kim ES, Kim MS, Moon A. Journal: Cytokine; 2005 Jan 21; 29(2):84-91. PubMed ID: 15598443. Abstract: To address how transforming growth factor (TGF)-beta and oncogenic H-ras signal transduction pathways interact with each other in the malignant progression of breast epithelial cells, we investigated the role of TGF-beta signaling pathway in invasive and migrative properties of H-ras-transformed MCF10A human breast epithelial cells in this study. Here we show that TGF-beta treatment significantly enhanced invasion and migration of H-ras MCF10A cells. H-ras-mediated activation of p38 MAPK and ERK-1/2 was stimulated by TGF-beta. TGF-beta increased expression of matrix metalloproteinase (MMP)-2 through transcriptional activation while TGF-beta-stimulated MMP-9 up-regulation did not occur at transcription level. Activation of p38 MAPK pathway was required for TGF-beta-induced cell migration, invasion and MMP-2/-9 up-regulation, indicating a critical role of p38 MAPK signaling in TGF-beta-promoted tumor progression of H-ras-activated cells. ERKs signaling was also crucial for TGF-beta-enhanced invasive and migrative phenotypes but the up-regulation of MMP-2/-9 was not dependent on ERKs activity. Taken together, we show that TGF-beta promotes H-ras-mediated cell migration and invasive phenotypes in which p38 MAPK and ERKs signaling pathways are involved. Our findings revealing how H-ras and TGF-beta signal pathways interact with each other in MCF10A human breast cells may provide an insight into molecular mechanisms for contribution of TGF-beta to a malignant progression of breast cancer in collaboration with activated H-ras.[Abstract] [Full Text] [Related] [New Search]